期刊信息
刊名:量子电子学报
曾用名:量子电子学
主办:中国光学学会基础光学专业委员会;中国科学院合肥物质科学家研究院
主管:中国科学院
ISSN:1007-5461
CN:34-1163/TN
语言:中文
周期:双月
影响因子:0.365217
数据库收录:
文摘杂志;北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);化学文摘(网络版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);日本科学技术振兴机构数据库;中国科技核心期刊;期刊分类:无线电电子学;物理学
期刊热词:
学术活动_第十三届全国光学前沿问题讨论会论文摘要集
曾用名:量子电子学
主办:中国光学学会基础光学专业委员会;中国科学院合肥物质科学家研究院
主管:中国科学院
ISSN:1007-5461
CN:34-1163/TN
语言:中文
周期:双月
影响因子:0.365217
数据库收录:
文摘杂志;北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);化学文摘(网络版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);日本科学技术振兴机构数据库;中国科技核心期刊;期刊分类:无线电电子学;物理学
期刊热词:
学术活动_第十三届全国光学前沿问题讨论会论文摘要集
计算机软件及计算机应用论文_神经网络二次集成
【作者】网站采编
【关键词】
【摘要】文章摘要:针对常用预测算法不同程度地存在泛化能力不足的缺陷,提出了基于神经网络二次集成的优化算法(NNE2-QQ)。该算法在第一次集成时采用量子粒子群算法进行个体网络的选择
文章摘要:针对常用预测算法不同程度地存在泛化能力不足的缺陷,提出了基于神经网络二次集成的优化算法(NNE2-QQ)。该算法在第一次集成时采用量子粒子群算法进行个体网络的选择优化,在第二次集成时采用量子免疫算法进行集成结论生成优化,并通过多次迭代自适应寻求个体和权值的最佳组合,实现神经网络二次集成模型的性能最优,最后实验验证了NNE2-QQ算法的有效性和实用性。NNE2-QQ可从海量数据中发现各种因素之间的联系及其规律,为预测判断提供支持。
文章关键词:
文章来源:《量子电子学报》 网址: http://www.lzdzxbzz.cn/qikandaodu/2021/1215/1355.html
上一篇:物理学论文_具有Dzyaloshinskii-Moriya相互作
下一篇:化学论文_石墨烯量子点复合材料的制备及其对抗