期刊信息
刊名:量子电子学报
曾用名:量子电子学
主办:中国光学学会基础光学专业委员会;中国科学院合肥物质科学家研究院
主管:中国科学院
ISSN:1007-5461
CN:34-1163/TN
语言:中文
周期:双月
影响因子:0.365217
数据库收录:
文摘杂志;北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);化学文摘(网络版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);日本科学技术振兴机构数据库;中国科技核心期刊;期刊分类:无线电电子学;物理学
期刊热词:
学术活动_第十三届全国光学前沿问题讨论会论文摘要集
曾用名:量子电子学
主办:中国光学学会基础光学专业委员会;中国科学院合肥物质科学家研究院
主管:中国科学院
ISSN:1007-5461
CN:34-1163/TN
语言:中文
周期:双月
影响因子:0.365217
数据库收录:
文摘杂志;北大核心期刊(2000版);北大核心期刊(2004版);北大核心期刊(2008版);北大核心期刊(2011版);北大核心期刊(2014版);北大核心期刊(2017版);化学文摘(网络版);中国科学引文数据库(2011-2012);中国科学引文数据库(2013-2014);中国科学引文数据库(2015-2016);中国科学引文数据库(2017-2018);中国科学引文数据库(2019-2020);日本科学技术振兴机构数据库;中国科技核心期刊;期刊分类:无线电电子学;物理学
期刊热词:
学术活动_第十三届全国光学前沿问题讨论会论文摘要集
量子模糊形态学联想记忆网络及在齿轮振动信号
【作者】网站采编
【关键词】
【摘要】针对传统模糊形态学联想记忆网络(FMAM)不能自适应选择结构元素的形状和大小,在对样本进行分类时存在错分问题,以量子的叠加、坍塌性质为基础,提出量子模糊形态学联想记忆网络(QFM
针对传统模糊形态学联想记忆网络(FMAM)不能自适应选择结构元素的形状和大小,在对样本进行分类时存在错分问题,以量子的叠加、坍塌性质为基础,提出量子模糊形态学联想记忆网络(QFMAM),用量子位系统构造结构元素,量子位概率代表相应的隶属度,获取具有自适应特性的结构元素,在分类前先对样本进行处理从而降低无用干扰信息对分类精度的影响。利用QFMAM分别对仿真数据和齿轮箱台架实验信号进行分类,并与FMAM、支持向量机(SVM)、朴素贝叶斯分类器(NBC)的分类性能作比较,验证了提出的QFMAM训练效率高、学习能力强、分类精度高,是一种很好用的智能分类器。
文章来源:《量子电子学报》 网址: http://www.lzdzxbzz.cn/qikandaodu/2021/0318/658.html
上一篇:高职校企合作运作的实践与探索
下一篇:凯乐科技全年订单充足